Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site.... 

Always Active
Strictly necessary cookies are absolutely essential for the website to function properly. These cookies provide the basic functions and security features of the website, anonymously.
Functionality cookies help to carry out certain functions, such as sharing the website content on social media platforms, collecting feedback, and other third-party features.
Performance cookies are used to understand and analyse the key performance indicators of the website, thus helping to provide a better user experience for visitors.

No cookies to display.

Analytics cookies are used to understand how visitors interact with the website. These cookies help provide information on website metrics, such as the number of visitors, bounce rate, traffic source, etc.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Unclassified cookies are cookies that are being analysed and have not yet been assigned a category.

No cookies to display.

Share

Version

Associated programs

Shells in CYPE 3D

The 2015.d version of CYPE 3D allows users to define shells. Shells are flat two-dimensional elements with constant thickness and without openings, whose perimeter is defined by a polygon.

Shells are introduced in the global stiffness matrix of the structure using a three-dimensional finite element model composed of six-node (quadratic) triangular flat shells. The type of element used is based on the overlap of two locally decoupled elements: one provides the axial stiffness (membrane forces) and the other the bending stiffness (panel forces).

The following properties can be defined for each shell:

  • Thickness and subgrade modulus
    In the local Z axis direction
  • Material
    Concrete, rolled steel, cold-formed steel, aluminium and generic material (by specifying the modulus of elasticity and Poisson coefficient).
  • Position
    With respect to the introduction plane
  • Discretisation
    The density of the mesh can be controlled by defining the maximum size of the triangle in the local x and y axes.
  • Direction of the axes
  • Internal fixity
    Internal fixity between the edges and other elements of the structure.
  • External fixity
    It is also possible to define the external fixity of the edges, but in this case, the fixity is applied to all the shells sharing that edge. The possible external fixity configurations are the same as those available for the nodes of CYPE 3D.
  • Integration strips
    Integration strips in shells define lines on which, for a given strip width, the forces corresponding to the shell are integrated to obtain the bar forces.

The program contains an option which users can use to view the shells in 3D. They can be viewed filled in or simply their outline can be displayed. This can be indicated in the drawing preferences option in the Job menu.

To be able to use shells in CYPE 3D, users must have the permits required to use CYPE 3D.

Below are some examples of structures created with shells in CYPE 3D: